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Abstract 
 
In most issues representing physical problems, the complex geometry cannot be represented by a Cartesian grid. The 

multi-block grid technique allows artificially reducing the complexity of the geometry by breaking down the real do-
main into a number of sub-domains with simpler geometry. The main aim of this article is to show the usefulness of 
simple solvers in complex geometry problems, when using curvilinear coordinates combined with multi-block grids. 
This requires adapted solvers to a nine nodes computational cell instead of the five nodes computational cell used with 
Cartesian coordinates for two-dimensional cases. These developments are presented for the simple iterative methods 
Jacobi and Gauss-Seidel and also for the incomplete factorization method strongly implicit procedure (SIP). These 
adapted solvers are tested in two cases: a simple geometry (heat transfer in a circular cross-section) and a complex 
geometry (solidification case). Results of the simple geometry case show that all the adapted solvers have good per-
formance with a slight advantage for the SIP solver. For increasing the complexity of the geometry, the results showed 
that Jacobi and Gauss-Seidel solvers are not suitable. However, the SIP method has a reasonable performance. A con-
clusion could be drawn that the SIP method could be used in complex geometry problems using multi-block grid tech-
nique when high precision results are not required.  

 
Keywords: Curvilinear coordinates; Heat transfer; Multi-block grid; Strongly implicit procedure  
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction  

In most issues representing physical problems, the 
geometry cannot be represented by a Cartesian grid; 
instead, it is common for the boundaries to be curved 
in space. A structured mesh is topologically rectangu-
lar which can be deformed in space such that it is no 
longer Cartesian but may still be orthogonal. Such a 
mesh can be difficult to generate, and so a completely 
general grid will be non-orthogonal with no restriction 
on the angles of the grid lines intersections. 

With the development of computer hardware, nu-

merical simulation has made rapid progress. Most 
commercial software packages have become more and 
more practical but not efficient in terms of their adap-
tation to complex geometry and/or inadequate bound-
ary conditions. 

For complex geometry problems adequate numeri-
cal methods using unstructured mesh are known. For 
an overview on unstructured mesh techniques see for 
example [1]. 

In the last few decades intensive studies have been 
done to model various problems, for example: to solve 
radiative transfer problem in triangular meshes [2] 
using discrete transfer method (DTM [3]), Galerkin 
finite element method used to study the turbulent fluid 
flow and heat transfer problems in a domain with 
moving phase-change boundary [4, 5] and also to 
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solve nonlinear phenomena [6]. 
Finite volume (FV) method for the calculation of 

solute transport in directional solidification has been 
studied and validated in [7]. Finite element (FE) 
method to model the filling and solidification inside a 
permanent mold is performed in [8]. Three-
dimensional parallel simulation tool using an unstruc-
tured FV method with Jacobian-free Newton-Krylov 
solver has been done in [9] for solidifying flow appli-
cations. Also, arbitrary Lagrangian-Euler (ALE) for-
mulation was developed in [10] to simulate casting 
processes, among others. 

The strongly implicit procedure (SIP) is known for 
solving the system of algebraic equations that arises, 
for instance, in the finite differences (FD) or finite 
analytic description of field problems [11]. This pro-
cedure was also used in multi-phase fluid flow and 
heat transfer problems [12]. 

In the present work the SIP also known as Stone's 
solver, is adapted to solve a linear equation system 
from FV discretization of two-dimensional heat trans-
fer problems in simple and complex geometries. From 
the FV discretization procedure one obtains a linear 
equation system of the form A Qθ =

 
where A is a 

sparse matrix, θ  the variable in computation and Q a 
vector of independent terms. The coefficient matrix 
will typically take a hepta diagonal structure, with the 
non-zero components occupying only seven diagonals 
of the matrix. For two-dimensional partial differential 
equations (PDE) there will be only five diagonals 
which are non-zero. For unstructured meshes, the co-
efficient matrix will also take a diagonal structure, 
with the non-zero components occupying nine diago-
nals of the matrix for two-dimensional cases. This 
regular structure enables a considerable reduction in 
memory use and the number of operations performed. 

In this paper the development of the classical 
solvers (Jacobi, Gauss-Seidel) and SIP (strongly im-
plicit procedure) is presented in order to be used with 
curvilinear coordinates systems in two-dimensional 
domains. The main aim is to apply these methods to 
non-orthogonal grids. Two examples are given to 
demonstrate the validity of the method. In the first 
case a simple geometry (heat transfer in a circular 
cross-section) is obtaining not only a numerical but 
also an analytical solution of the thermal evolution of a 
slab with infinite length and circular cross section. The 
second case is a classical example of a multi-physics 
phenomena-casting process. Normally, complex ge-
ometry problems are solved using moving boundary 

techniques, but in this paper we use multi-block grid. 
We study the possibility of using simple iterated 
methods (Jacobi and Gauss-Seidel) and an incomplete 
factorization method SIP instead of using, for example, 
Krylov space methods. 

 
2. Governing linear system 

From the discretization process of the heat transfer 
phenomena, no matter which method is used, the re-
sult is an algebraic equation system. This can, in gen-
eral (see e.g. [13-15]), be written as the following lin-
ear system:  

 
A Qθ =  (1) 

 
where A is a sparse matrix, θ  is a vector which is the 
computational variable, and Q is a vector of independ-
ent terms. The structure of the matrix A depends on the 
ordering of the variables in the vectorθ . As in [13] 
one orders the entries in the vector θ  starting at the 
southwest corner of the domain, proceeding north-
wards along each grid and then eastward across the 
domain. 

The algebraic equation for a particular control vol-
ume in a two-dimensional domain, see Fig. 1, using 
curvilinear coordinates, is of the form:  

 
P P nb nb P

nb

A A Qθ θ+ =∑   (2) 

 
where P represents the node where the partial differen-
tial equation value is calculated and the index nb 
represents the neighborhood nodes involved in the 
approach. Using a geographical notation: E (east), N  
 

  
Fig. 1. Typical two-dimensional control volume. 
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(north), S (south), W (west), NE (northeast), NW 
(northwest), SE (southeast), SW (southwest), the sum 
is extended in the following form: 
 

nb nb E E W W N N
nb

S S NE NE SE SE

NW NW SW SW

A A A A

A A A
A A

θ θ θ θ

θ θ θ
θ θ

= + +

+ + +
+ +

∑
  (3) 

 
The properties of the linear system Eq. (1) are im-

portant when setting up an iteration method for its 
solutions. Let us present some of the classical iteration 
methods modified to the problem treated here. 

 
2.1 Jacobi's method 

In the Jacobi method, the resulting equations from 
the discretization process are determined separately. 
Eq. (3) is modified assuming the following form: 

 
1

P P P nb nb
nb P

A Q Aθ θ−

≠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑   (4) 

 
Having the following iterative method defined as 
 

1 ( 1)k k
P P P nb nb

nb P

A Q Aθ θ− −

≠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑   (5) 

 
where all the terms of the Eq. (5) are related to the last 
iteration release. In the Jacobi method, the values used 
are of the previous iteration in a way to get the values 
of the following iteration. However, when we are cal-
culating the new, the actual value is already known.  

 
2.2 Gauss-Seidel's method 

The Gauss-Seidel method, in contrast with the 
Jacobi method, uses the actual values instead of the 
ones of the previous iteration (see [14, 16]). This idea 
leads to the following modification of Eq. (5): 

 

{ }

{ }

1 1 ( )

, , ,

1 ( )

, , ,

k k
P P P P nb nb

nb SW W NE S

k
P nb nb

nb N NE E SE

A Q A A

A A

θ θ

θ

− −

∈

−

∈

= −

−

∑

∑
 (6) 

 
Usually, this method converges faster than the 

Jacobi method. 
 

2.3 SIP method 
The SIP solver is an advanced version of the in-

complete LU decomposition [17]: 
 
M LU=  (7) 
 

where M is the iterative matrix, L (lower triangular) 
and U (upper triangular) matrices. The matrix M is 
given by the splitting of the matrix A in the form 
M A N= + , such that M is a good approximation to A. 

This method will be described for a nine-point com-
putational cell (see Fig. 1). The L (lower) and U (up-
per) matrices have non-zero elements only on diago-
nals on which A has non-zero elements. The product 
of lower and upper triangular matrices with these 
structures has more non-zero diagonals than A. 

For the nine-point computational cell there are four 
diagonals (corresponding to nodes NN (north-north), 
NNW (nor-northwest), SS (south-south), SSE (south-
southeast), SS (south-south)) as can be seen in Fig. 2. 

The nine sets of elements (five in L and four in U) 
are determined by using the rules of multiplication 
matrix as follows:  

 

,

SW SW

W SW N W

NW W N NW

NNW NW N

SS SW SE

S SW E W SE S

P SW NE W E NW SE S N P

N W NE NW E P N

NN NW NE

SSE S SE

SE S E P E

E S NE P E

NE P NE

M L
M L U L
M L U L
M L U
M L U
M L U L U L
M L U L U L U L U L
M L U L U L U
M L U
M L U
M L U L U
M L U L U
M L U

=
= +
= +
=

=
= + +
= + + + +
= + +
=
=
= +
= +
=

 (8) 

 
We wish to select matrices L and U in order to ob-

tain M as a good approximation to A and consequently 
have a faster convergence of the method. For this rea-
son the matrix N must contain, at least, the four diago-
nals of the matrix M which correspond to zero diago-
nals of A. Furthermore, N has to have non-zero ele-
ments only on these diagonals. Therefore, the other 
diagonals of matrix M have the corresponding diago-
nals of A. 

In [17], Stone recognized that convergence can be 
improved by allowing matrix N to have non-zero ele-
ments on the diagonal corresponding to all thirteen 
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non-zero diagonals of LU. Considering the vector Mθ , 
the method can be easily derived: 

 
( ) P P S S N N E EP

W W NE NE NW NW

SE SE SW SW NNW NNW

SSE SSE NN NN SS SS

M M M M M
M M M
M M M
M M M

θ θ θ θ θ
θ θ θ
θ θ θ
θ θ θ

= + + +

+ + +
+ + +
+ + +

  (9) 

 
Each term in this equation corresponds to a diagonal 

of M LU= . The matrix N must contain the four last 
terms which are the extra diagonals of M, and the ele-
ments on the remaining diagonals, are chosen so that 

0Nθ ≈ : 
 

0

P P S S N N E E

W W NE NE NW NW

SE SE SW SW NNW NNW

SSE SSE NN NN SS SS

N N N N
N N N
N N N
N N N

θ θ θ θ
θ θ θ
θ θ θ
θ θ θ

+ + + +
+ + + +
+ + + +
+ + + ≈

 (10) 

 
This requires that the contribution of the four extra 

terms, in the above equation, have to be nearly can-
celled by the contribution of other diagonals, i.e., Eq. 
(9) should be reduced to the following expression: 

 
( ) ( )
( ) ( )

* *

* * 0,
NNW NNW NNW SSE SSE SSE

NN NN NN SS SS SS

M M

M M

θ θ θ θ

θ θ θ θ

− + −

+ − + − ≈
 (11) 

 
where * * * *, , ,NNW SSE NN SSθ θ θ θ  are approximations of 

, , ,NNW SSE NN SSθ θ θ θ , respectively. 
The proposed approximation in this study is: 
 

( )
( )
( )
( )

*

*

*

*

2

2

2

2 ,

NNW NW N W P

NN N NE NW P

SS S SW SE P

SSE S SE E P

θ α θ θ θ θ
θ α θ θ θ θ
θ α θ θ θ θ
θ α θ θ θ θ

= + + −

= + + −

= + + −

= + + −

 (12) 

where 1α <  by stability reasons. 
Substituting (12) into Eq. (11) and comparing the re-
sult with Eq. (10), we obtain all elements of matrix N 
as linear combinations of NNWM  ,SSE NNM M  and 

.SSM  Elements of the matrix M can be set equal to the 
sum of matrix elements of A and N. 

The resulting equations are not only sufficient to de-
termine all of the elements of the matrix L and U, but 
they can be solved in sequential order beginning at the 
southwest corner of the grid: 

 

( )

( 1),( 1)

( 1),( 1)

( 1),

( 1),( 1) ( 1),( 1)

( 1),( 1) ( 1), ( 1),( 1)

,( 1)

1

1

1

ij
ij SW
SW i j

SE

ij ij ij ij ij i j
W W SW N NW N

ij ij i j
ij S W N
NW i j i j

N NE

ij ij i j ij i j ij i j
ij S SW E W SE SW SE
S i j

SE

AL
U

L A L U L U
A L UL
U U

A L U L U L UL
U

α
α

α

α
α

− −

− +

−

− + − +

− − − − −

−

=
+

= + −
−=

+ +

− − −=
+

  

( )
( )

( 1),( 1) ( 1), ( 1),( 1)

,( 1) ( 1),( 1) ( 1),( 1)

( 1),( 1) ( 1),( 1)

( 1), ( 1),( 1)

2

2

ij ij ij i j ij i j ij i j
P P SW NE W E NW SE

ij i j ij i j ij i j
S N SW SE S SE

ij i j i j
NW NE N

ij ij i j ij i j
ij N W NE NW E
N

L A L U L U L U

L U L U L U

L U U

A L U L U LU

α

α

α

− − − − +

− − − − +

− + − +

− − +

= − − −

− + +

+ +

− − −=

( )

( 1),( 1)

,( 1)

,( 1) ,( 1)

ij i j
NW NE

ij ij
P NW

ij ij i j
ij SE S E
SE ij ij ij

P SW S

ij ij i j ij i j
ij E S NE S SE
E ij

P

ij
ij NE
SE ij ij

P NW

U
L L

A L UU
L L L

A L U L UU
L

AU
L L

α

α

α

α

− +

−

− −

+
−=

+ −

− −=

=
+

  

 
One considers that any matrix element that carries 

the index of a boundary node is zero. 
The equation system using this approximation is 
solved by iteration. The updated residual is calculated 

 
 
Fig. 2. Schematic presentation of the matrices L (Lower), M (Upper) and the product matrix M;diagonals of M not found in A are 
shown by dashed lines. 
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by the following equation: 
 

1n nLUδ ρ+ =  (13) 
 

The multiplication of the above equation by 1L−  leads 
to: 

 
1 1n n nL Rδ ρ+ −= =  (14) 

 
where R is computed by: 
 

( 1),( 1) ,( 1)

( 1),( 1) ( 1),

.

ij ij i j ij i j
ij SW S

ij
P

ij i j ij i j
NW W

ij
P

L R L RR
L

L R L R
L

ρ − − −

− + −

− −=

−−
 (15) 

 
When the computation of R is complete, we need to 
solve Eq. (14) using 
 

,( 1) ( 1),( 1)

( 1), ( 1),( 1)

ij ij ij i j ij i j
N NE

ij i j ij i j
E SE

R U U
U U

δ δ δ
δ δ

+ + +

+ + −

= − −
+ +

 (16) 

 
where the indexes i,j are decreasing. 

 
3. Numerical experiments 

In this section two problems are presented and 
solved using the above method. The first application is 
given by thermal evolution in circular cross section; 
the second is a solidification problem with complex 
geometry. 

 
3.1 Simple geometry case 

We start with the resolution of the thermal evolution 
of a slab with infinite length and circular cross section. 
The material has a unitary diffusivity, initially at the 
temperature of 0o C , with Dirichlet boundary condi-
tions (constant temperature equal to 1o C ). This prob-
lem is governed by the following expression (see 
[18]): 

 
2 2

2 2 ,a
t
φ φ φ

ξ η
⎛ ⎞∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (17) 

 
where a is the thermal diffusivity. Applying the fol-
lowing boundary conditions: 
 

( )
( ) ( )
( ) ( )

, ,0 0;

0, , 1, , 1;

,0, ,1, 1,

t t

t t

φ ξ η
φ η φ η
φ ξ φ ξ

=

= =

= =

 (18) 

Eq. (17) has the following analytical solution in polar 
coordinates, 
 

( )
( )

20

1 1

( , ) 1 ,nn t

n n

J r
r t e

J
µµ

µ

+∞
−

=

Ψ = −∑  (19) 

 
where nµ is the squares of the equation ( )0 0J µ =  
and 0J  and 1J  are the Bessel functions of first de-
gree, first and second order, respectively. 

The use of curvilinear coordinates allows the use of 
a rectangular and time independent computational 
domain. In the FV method, one has to select the meth-
ods of approximating surfaces and volume integrals 
[13]. This is done using the grid shown in Fig. 3 gen-
erated by bilinear interpolation [19]. In order to avoid 
time step limitations, the time discretization was per-
formed by the implicit Euler scheme. The time step 
used was 31.0 10t −∆ = ×  seconds. 

This procedure was implemented in a FORTRAN 
code and the results are the following. Fig. 4 presents a 
comparison of the analytical solution, Eq. (19), and the 
numerical solution of Eq. (17).  

A good agreement between numerical and analyti-
cal solutions is obtained, being the maximum error of 
8% verified for 0.1seconds. 

 
 

  
           (a)                               (b) 
 
Fig. 3. Used grid to solve the two dimensional heat conduction 
problem in irregular domain: (a) Physical domain; (b) Computa-
tional domain. 
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Fig. 4. Temperature versus time for the numerical and analytical 
solutions.  
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As was already mentioned, in these simulations 
three iterative solvers were used. The performance of 
each one is presented in Table 1 where is also made 
the comparison of the number of iterations to conver-
gence using two distinct stopping criteria ( 310− and 

510− ). In our simulations the number of iterations was 
limited to one thousand. 

The solution is convergent for the three used meth-
ods. Using a stopping criterion of 10-3 all the tested 
solvers show a good performance, with a slight ad-
vantage for the SIP method. 
Increasing the precision for 10-5, only the SIP method, 
presented in this work for the case of a computational 
cell of nine points, shows a good performance in 
terms of number of iterations, see Table 1. 

To evaluate the difference in the value of the de-
pendent variable (temperature) obtained by the SIP 
method using distinct stopping criteria (10-3 and 10-5) 
the temperature difference is presented in Fig. 5. The 
maximum of temperature difference is about 10-7 ºC. 
Therefore, it seems that there is no reason to use the 
stopping criterion 510− . 

 
3.2 Complex geometry case 

The heat transfer problem arising from the study of 
the continuous metal casting process can be written 
by the following energy conservative equation: 

 

( ) ( ) ,PC k q
t
ρ φ φ∂ = ∇ ⋅ ∇ +

∂
&  (20) 

 
Tabel 1. Iterative methods performance. 
 

Stop criteria 10-3 Stop criteria 10-5 
Solver  

Iter. Residual Iter. Residual

Jacobi 8 2.56×10-4 1000 2.03×10-5

Gauss-Seidel 5 1.74×10-4 1000 2.03×10-5

SIP 2 9.55×10-4 3 1.92×10-6

 

0,0E+00

1,0E-07

2,0E-07

3,0E-07

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Radius [m]

∆T
 [º

C
]

  
Fig. 5. Temperature difference using two distinct stopping crite-
ria. 

where the left hand side represents the transient con-
tribution to the conservative energy equation (φ is the 
temperature); ( )k φ∇ ⋅ ∇  is the diffusive contribution 
to the energy equation, k is the thermal conductivity 
and q& represents the energy released during the phase 
change. 

One also considers the physical properties , PCρ  
and k as constants analogously as done in [9, 20, 21]. 

The term q&  can be expressed as a function of ef-
fective solid material fraction sf , part density ρ  and 
enthalpy variation during the phase change fh∆ , by 
the following expression [20]: 

 

( )f sq h f
t
ρ∂= ∆

∂
&  (21) 

 
One can also decompose sf  in the following way: 
 

s sf f
t t

φ
φ

∂ ∂ ∂=
∂ ∂ ∂

 (22) 

 
Assuming that fh∆ is independent of temperature 
and the material is isotropic, one substitutes Eqs. (21) 
and (22) in Eq. (20) and obtains 
 

( )21 .f s

P

h f
t C
φ α φ

φ
∆⎛ ⎞∂ ∂− = ∇⎜ ⎟∂ ∂⎝ ⎠

 (23) 

 
One uses the curvilinear coordinates, which trans-
forms the domain into rectangular and time independ-
ent. The calculation is given by a uniform mesh of 
squares in 2D (see Fig. 1), by the following transfor-
mation: ( )1 2,i ix x ξ ξ=  for i=1,2 characterized by the 
Jacobian J: 
 

,

det .i

j i j

xJ
ξ

⎡ ⎤∂= ⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (24) 

 
Therefore 
 

,
ij

j

i j i jx x J
ξφ φ φ β

ξ ξ
∂∂ ∂ ∂= =

∂ ∂ ∂ ∂
 (25) 

 
where ( ) ( )1 deti jij

ijJβ += −  represents the cofactor 
in the Jacobian J. 

Substituting Eq. (25) in Eq. (23) one obtains 
 

11 ,f mjs

P j m

h fJ B
t C J
φ φα

φ ξ ξ
⎛ ⎞∆ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂− = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (26) 
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where the coefficient mjB  is defined by: 
 

1 1 2 2 .mj kj km j m j mB β β β β β β= = +  (27) 
 

The coefficient mjB  becomes zero when the grid is 
orthogonal, therefore the use of these coefficients in 
the Eq. (26). 

The second term of Eq. (26) can be expressed by 
 

1 2
1 2

2 2 2

11 12 222 2
1 1 2 2

1

,

f s

P

h fJ C C
t C

C C C

φ φ φ
φ ξ ξ

φ φ φ
ξ ξ ξ ξ

∆⎛ ⎞∂ ∂ ∂ ∂− = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 (28) 

 
where 
 

( )

1 1 11 12
11 12 1

1
1 2 1 2

1 1 21 22
21 22 1

2
1 2 1 2

1 11
11

1 21 12
12

1 22
22

,

,

,

,

.

J J B BC B B J

J J B BC B B J

C J B

C J B B

C J B

ξ ξ ξ ξ

ξ ξ ξ ξ

− −
−

− −
−

−

−

−

⎛ ⎞∂ ∂ ∂ ∂= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

=

= +

=

  

 
By the discretization, using the FV method, follows  
 

2
E W

V i

dV Vφ φ φ
ξ
∂ −= ∆
∂∫   

 
and the second order derivatives are approximated as 
follows: 
 

2

2
ˆ. . e w

V Si i i ie w

dV n dS S Sφ φ φ φ
ξ ξ ξ ξ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫   

2 n s
i in s

V Vi j i j ic

S S
dV dV

φ φ
ξ ξφ φ

ξ ξ ξ ξ ξ

⎛ ⎞ ⎛ ⎞∂ ∂−⎜ ⎟ ⎜ ⎟⎛ ⎞ ∂ ∂∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠= = =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∆⎝ ⎠
∫ ∫   

 
The algebraic equation for a particular control vol-

ume in a two-dimensional domain, see Fig. 1, using 
curvilinear coordinates, can be established by: 

,
P P P E E W W N N S S

NE NE SE SE NW NW SW SW

Q A A A A A
A A A A
θ θ θ θ θ
θ θ θ θ

= + + + +
+ + + +

  (29) 
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are valid for internal control volume. Different possi-
bilities must be considered for heat transfer conditions 
on the boundary: 

 
(i) Continuity condition for boundaries defined be-

tween continuous material [20]: 
 

1 2
1 2

and ,m m
m mn n

φ φ φ φ∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (30) 

 
(ii) Newtonian heat transfer, for interfaces between 

metal and mold: 
 

( )* ,m i m s
m

k h
n
φ φ φ∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠

 (31) 

 
(iii) Convective heat transfer between mold and the 

environment: 
 

( ),m e m e
m

k h
n
φ φ φ∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠

 (32) 

 
where he and h* are the convective heat transfer coef-
ficients shown in the Table 2. The convective heat 
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transfer coefficients were determined by using the 
inverse heat conduction as described in [24]. The 
basic principle is to assume that the heat flux is a 
constant on a linear function of time within a given 
time interval. The whole description of this technique 
could be found in [25]. 

The complex geometry domain was divided into 17 
polygons, Fig. 6, with 4 vertices (sub-domains) [22, 
23]. 

In this case an analysis of heat transfer for casting 
process in two dimensions was made for the case 
during solidification. The idea was to determine the 
distribution of temperature and calculate the solidifi-
cation time for the whole domain.  

The definition of all coordinate lines in the interior 
of the domain is made by bilinear interpolation of the 
nodal position defined in the boundaries resulting in 
the grid showed in Fig. 7. 

The physical characteristics of the material in-
volved in the numerical simulation are shown in Ta-
ble 3. In this case, the properties of the mold materials 
were considered as constant. 

The environment temperature was considered to be 
20ºC. To prevent the filling to be interrupted by pre-
mature solidification, the metal is cast into a hot mold. 

 
Table 2. Convective heat transfer coefficients. 
 

Interface Convective heat transfer  
coefficients (W/m2ºC) 

Cast metal / mold hi=2500 

Sub-domain 8/16 hi=500 

Sub-domain 11/17 hi=500 

Sub-domain 6/14 hi=600 

Mold / environment he=150 

 

2

14

6

4

9

1

12 13 15 16

853

10

11

17

7

  
Fig. 6. Sub-domains of the complex geometry case. 

 

 
 
Fig. 7. Multi-block grid. 

Therefore, the initial temperature field in the mold is 
considered uniform and equal to 300ºC. The initial 
temperature field in the part is also considered uni-
form, and equal to the liquidus temperature. The end 
of the phase change is determined by the solidus tem-
perature. 

Table 4 shows the performance of the three solvers 
under study for the seventeen blocks in which the 
complex geometry was divided (see Fig. 6). Since the 
analysis was made for each sub-domain, only some 
relevant sub-domains will be discussed further. 

The sub-domain 1, which is the most complex 
geometrical structure, shows that after 1000 iterations 
the SIP method has better residual in comparison with 
the other two classical solvers. The same conclusion 
can be made for sub-domain 14 after 1000 iterations,  

 
Table 3. Physical properties. 
 

Property Alloy 
AL 12Si 

Grey  
cast-iron 

Density (kg/m3) 2670 7230 

Conductivity (W/mºC) 185 38 

Heat capacity (J/KgºC) 1260 750 

Latent heat (KJ/Kg) 395 … 

Liquidus temperature (ºC) 585 … 

Solidus temperature (ºC) 575 … 

 
Table 4. Iterative methods performance. 
 

Jacobi Gauss-Seidel SIP Block
Iter. Res. Iter. Res. Iter.. Res. 

1 1000 1,51 1000 1,51 1000 1,99×10-3

2 1000 0,48 1000 0,46 2 8,90×10-4

3 1000 0,33 1000 0,33 1000 1,05 ×10-3

4 1000 2,28 1000 2,28 2 8,64×10-4

5 1000 0,52 1000 0,53 2 9,18×10-4

6 1000 3,32 1000 3,31 2 1,66×10-4

7 1000 0,59 1000 0,57 2 1,54×10-4

8 1000 1,65 1000 1,73 2 4,57×10-4

9 1000 1,78 1000 1,66 2 6,41×10-5

10 1000 1,66 1000 1,59 1000 1,91×10-3

11 1000 1,27 1000 1,15 2 1,21×10-4

12 1000 0,34 1000 0,34 3 4,44×10-5

13 1000 1,05 1000 0,90 2 2,46×10-4

14 1000 5,36 1000 5,47 1000 6,19×10-3

15 1000 0,25 1000 0,25 2 2,85×10-4

16 1000 0,77 1000 0,78 1000 3,07×10-3

17 1000 0,38 1000 0,37 1000 1,31×10-3
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even though the higher simplicity of its geometry 
shows the worse residual result. 

Sub-domain 7, which is a block with three bounda-
ries in contact with the cast part, converges after only 
two iterations for SIP solver. For the other cited 
solvers no convergence has been shown after 1000 
iterations.  

Sub-domain 9, besides its similarity with sub-
domain 14 in terms of geometry and boundary condi-
tions, shows the best residual result for the SIP solver. 

  
4. Conclusion 

Adaptations of simple iterative methods (Jacobi 
and Gauss-Seidel) and the incomplete factorization 
method ( strongly implicit procedure) to generalized 
curvilinear coordinates were presented and applied in 
simple and complex geometries through the multi-
block grid technique. 

Two test cases, a simple geometry (heat transfer in 
a circular cross-section) and a complex geometry 
(solidification case), are presented. 

In the simple geometry case the performance of the 
adapted solvers herein expressed in terms of residual 
and number of iterations shows to have a very good 
performance with a slight advantage for the SIP 
solver. When the stopping criterion is changed from 
high precision to low precision residue, the corre-
sponding temperature difference is insignificant. 
Therefore, the use of the latter stopping criterion does 
not have any significant change in the solution, hav-
ing the advantage of reducing the computational time. 
For increasing the complexity of the geometry, the 
results showed that Jacobi and Gauss-Seidel solvers 
are not suitable. However, the SIP solver continues to 
have a reasonable performance. In conclusion, the 
strongly implicit procedure method, when combined 
with generalized curvilinear coordinates and multi-
block grid technique, can be used in complex geome-
try problems when high precision results are not re-
quired. 
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